Lecture 2 : "Chemistry and Methods"

Chapter 2 Topics

- Fundamental Building Blocks
- Macromolecules
- The Cell

Chapter 3 Topics

- Methods of Culturing Microorganisms
- Microscope

Chapter 2 Fundamental Building Blocks

- Atoms
- Elements
- Molecules and compounds

Atom - unit of an element

- electron - subatomic, negatively charged
- proton - subatomic, positively charged
- neutron
- subatomic, uncharged
- Ion - atoms in which the number of protons and electrons is unequal
 - less electrons than protons - cation
 - anion
 - more electrons than protons
- <u>atomic number</u> reflects the number of protons
- <u>atomic mass number</u> reflects the number of protons **and** neutrons

Isotope - atoms with same atomic number but with varying atomic mass

- radioisotopes are unstable isotopes - used in research and medical applications and in dating fossils and ancient materials

Pure chemical substances composed of atoms with the same number of protons, are called

Chemical ELEMENTs

All chemical matter consists of elements.

New elements of higher atomic number are discovered from time to time, usually as products of artificial nuclear reactions.

Different Types of Atoms Elements and Their Properties

- Changes in numbers of protons, neutrons, and electrons in atoms create different elements
 <u>Example</u>: radioisotopic decay ("nuclear fission").
 (this is NOT equal to "atoms interacting chemically with one another")
- Each element has a characteristic atomic structure and predictable chemical behavior
- Each assigned a distinctive name with an abbreviated shorthand symbol
- All elements are organized in the periodic table

Atoms (elements) consist of protons and neutrons (resident in a space called nucleus) and electrons (resident in the shell).

- a **shell** reflects a **period** in the periodic system
- a valence shell is the most outer occupied one (usually not complete)
- a group includes elements of the same valence

Standard periodic table

Group →	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
↓ Period																		
1	1	1															2	
	H																He	
2	3	4										5	6	7	8	9	10	
	Li	Be											В	С	N	0	F	Ne
3	11	12										13	14	15	16	17	18	
	Na	Mg										Al	Si	P	S	CI	Ar	
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	ln -	Sn	Sb	Те	1.1	Xe
6	55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba		Hf	Та	W	Re	Os	lr –	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
7	87	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71			
Lannaholda				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
** Actinoids			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	

Element categories in the periodic table													
		Metals		1									
Alkali metals	Alkeling on the metals	Inner transition	elements	Transition elements	Other metals	Metalloids	Other permetals	Halagana	Noble cores	Unknown			
	Aikaine earti metais	Lanthanides	Actinides	Transition elements	Other metals		Other nonmetals	naiogens	NODIE gases				
Atomic numbe Solids	r colors show state at Liquids	standard temp 1 atm) Gas	erature and ses	pressure (0 °C and Unknown	Primordial	Bo	rders show natura om decay	l occurrenc Synthetic	e Undis	covered			

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 2.1 Models of atomic structure

Electrons within a given shell are not all equal and the occupy "preferred spaces" in the shells, also referred to as "**Orbitals**."

Fig. 2.1 Models of atomic structure

10

Electron Orbitals and Shells

- An atom can be envisioned as a central nucleus surrounded by a "cloud" of electrons
- Electrons rotate about the nucleus in pathways ("preferred spaces") called **orbitals** - volumes of space in which an electron is likely to be found
- Electrons occupy energy shells, from <u>lower-energy to</u> <u>higher-energy as they move away from the nucleus</u>
- Electrons fill the orbitals and shells in pairs starting with the shell nearest the nucleus
- Each element, then, has a unique pattern of orbitals and shells

Each element is characterized by a specific "Electron configuration":

Figure 2.2

Bonds and Molecules

- Most elements do not exist naturally in pure form
- Molecule a distinct chemical substance that results from the combination of two or more atoms (can be two of the same element, such as O₂)
- **Compounds** molecules that are combinations of two or more different elements (such as CO₂)
- **Chemical Bonds** When two or more atoms share, donate, or accept electrons
- Types of bonds formed and to which atoms and element bonds are determined by the atom's **valence**

Chemical bonds

- Covalent
- Ionic
- Hydrogen

Chemical bonds involve atoms sharing, donating or accepting electrons

Fig. 2.3 General representation of three types of bonding ¹⁶

Covalent bonds: shared electron bond

Usually, the number free valences determines the number of possible covalent bonds.

Carbon tends to form only covalent bonds thereby generating an organic compound.

CH₄, CO₂, HCN

The sharing of electrons generates "noble gas electron configurations" (valences are completely occupied); hence, stable bonds.

Hydrogen gas, molecular oxygen, and methane are examples of covalent bonding (atoms sharing electrons).

Fig. 2.4 Examples of molecules with covalent bonding

Polar vs. Nonpolar Molecules

- Some covalent bonds result in a polar molecule - an unequal distribution of the electrons (charge); example: H₂O.
 - Polarity is a significant property of many large molecules, influences both reactivity and structure
- An electrically neutral molecule is **nonpolar**
- Van der Waals forces- weak attractions between molecules with low levels of polarity

Polarity can occur with different types of covalent bonding (ex. H₂O)

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 2.5 Polar molecule

20

Ionic Bonds: Electron Transfer Among Atoms

- Electrons transferred completely from one atom to another, without sharing, results in an ionic bond (ex. NaCl)
- Molecules with ionic bonds, when dissolved in a solvent, can separate in to charged particles called ions in a process called ionization
- Cations- positively charged ions
- Anions- negatively charged ions
- These ionic molecules that dissolve to form ions are called electrolytes

lonic bonds: electrostatic attraction between <u>oppositely charged ions</u>.

Compounds with ionic bonds (ionic compounds) are usually inorganic and organized in a lattice.

Sodium chloride (table salt) is an example of ionic bonding (electron transfer among atoms or redox reaction).

Fig. 2.6 Ionic bonding between sodium and chlorine

Ionic bonding molecules breakup (ionization) when dissolved in a solvent (water), producing separate positive and negative particles.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 2.7 Ionization

Hydrogen bonds: interaction of hydrogen atoms (covalently bound to oxygen or nitrogen) with weak opposing electronic charges.

Polarity of the molecule leads to interaction with other polar molecules (water).

Hydrogen bonding is the attraction between the **positive hydrogen ion & a negative atom**. An example would be water molecules.

Fig. 2.8 Hydrogen bonding in water

Formulas, Models, and Equations

- Molecular formula gives atomic symbols and the number of elements involved in subscript (H₂O, C₆H₁₂O₆).
- Molecular formulas **might not be unique** (i.e., glucose, galactose, and fructose)
- Structural formulas illustrate the number of the atoms and the number and types of bonds including individual relationships between Atoms in a molecule/compound

Figure 2.9

28

Chemical Equations

- Balance equations are used to illustrate chemical reactions
 - Reactants- Molecules entering (used in) a reaction
 - Products- the compounds produced by a reaction

Types of Reactions

- Synthesis: reactants bond together to form an entirely new molecule
 - A + B <--> AB
 - S + O₂ <--> SO₂
 - $-2H_2 + O_2 < --> 2H_2O$ (note that equations must be balanced)
- Decomposition: bonds on a single reactant molecule are permanently broken to release two or more product molecules
 - AB <--> A + B
 - $2H_2O_2 < --> 2H_2O + O_2$

 Exchange: The reactants trade places between each other and release products that are combinations of the two

AB + XY <---> AX + BY (reversible reaction)

• Catalysts (metals or Enzymes)increase the rate of the reaction (lower the activation energy)

Solutions: Homogeneous Mixtures of Molecules

- Solution- a mixture of one or more solutes uniformly dispersed in a solvent
- The solute cannot be separated by filtration or settling
- The rule of solubility- "like dissolves like"
- Water- the most common solvent in natural systems
 because of its special characteristics
 - Hydrophilic molecules attract water to their surface (polar)
 - **Hydrophobic** molecules repel water (nonpolar)
 - Amphipathic (amphiphilic) molecules have both hydrophilic and hydrophobic properties

Concentration of Solutions

- Concentration the amount of solute dissolved in a certain amount of solvent
 - In biological solutions, commonly expressed as molar concentration or molarity (M)
 - One mole dissolved in 1 L
 - One mole is the molecular mass of a compound in grams

Figure 2.11

34

Acidity, Alkalinity, and the pH Scale

- Acidic solutions when a compound dissolved in water (acid) releases excess hydrogen ions (H⁺)
- Basic solutions- when a compound releases excess hydroxide ions (OH⁻)

pH scale

- **pH scale** measures the acid and base concentrations of solutions:
 - Ranges from 0 (most acidic) to 14 (most basic); pH= 7 is neutral (i.e., [H⁺] = [OH⁻])
 - $pH = -log[H^+]$
| TABLE 2.2 | Hydrogen Ion and Hydroxide Ion
Concentrations at a Given pH | | | | |
|---------------------------------|--|----|--------------------------------|--|--|
| Moles/Liter of
Hydrogen lons | Logarithm | рН | Moles/Liter of OH ⁻ | | |
| 1.0 | 10^{-0} | 0 | 10^{-14} | | |
| 0.1 | 10^{-1} | 1 | 10^{-13} | | |
| 0.01 | 10^{-2} | 2 | 10^{-12} | | |
| 0.001 | 10^{-3} | 3 | 10^{-11} | | |
| 0.0001 | 10^{-4} | 4 | 10^{-10} | | |
| 0.00001 | 10^{-5} | 5 | 10^{-9} | | |
| 0.000001 | 10^{-6} | 6 | 10^{-8} | | |
| 0.0000001 | 10^{-7} | 7 | 10^{-7} | | |
| 0.00000001 | 10^{-8} | 8 | 10^{-6} | | |
| 0.000000001 | 10^{-9} | 9 | 10^{-5} | | |
| 0.0000000001 | 10^{-10} | 10 | 10^{-4} | | |
| 0.00000000001 | 10^{-11} | 11 | 10 ⁻³ | | |
| 0.000000000001 | 10^{-12} | 12 | 10 ⁻² | | |
| 0.00000000000000 | $1 10^{-13}$ | 13 | 10^{-1} | | |
| 0.000000000000 | 10^{-14} | 14 | 10^{-0} | | |

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The pH of an environment (exterior or interior of a cell) is important for living systems.

Fig. 2.12 The pH scale

Neutralization Reactions

- Neutralization reactions- occur in aqueous solutions containing both acids and bases
- Give rise to water and other neutral byproducts
- HCI + NaOH <--> H_2O + NaCl

Molecules

• Can be inorganic and organic molecules.

– Inorganic: C or H is present (ex. CO_2 , H_2)

– Organic: C and H are present (ex. CH₃OH)

Molecules can form complex Compounds

The Chemistry of Carbon and Organic Compounds

- Inorganic chemicals: usually do not contain both C and H (ex. NaCl, CaCO₃)
- Organic chemicals: Carbon compounds with a basic framework of the element carbon bonded to itself and other atoms
 - Most of the chemical reactions and structures of living things involve organic chemicals

Carbon- the Fundamental Element of Life

- Valence makes it an ideal atomic building block
- Forms stable chains containing thousands of C atoms, with bonding sites available
- Can form linear, branched, or ringed molecules
- Can form single, double, or triple bonds
- Most often associates with H, O, N, S, and P

Functional Groups of Organic Compounds

- Special molecular groups or accessory molecules that covalently or hydrogen-bond to organic compounds are called **functional groups**.
- FG help define the chemical class of certain groups of organic compounds
- FG give organic compounds unique reactive properties
 - Reactions of an organic compound can be predicted by knowing the kind of functional group or groups it carries

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The carbon in inorganic and organic molecules is the basic fundamental element of life. Functional groups (R) bind to these carbons.

Table 2.3 Representative functional groups and classes of organic compounds

- **Biochemistry**: study of the compounds of life, their synthesis and degradation
- **Biochemicals**: organic compounds produced by (or components of) living things

Biochemicals can be very large and thus called more specifically: **macromolecules**.

2.2 Macromolecules

- Polysaccharides (Carbohydrates)
- Lipids
- Proteins
- Nucleic acids

Macromolecules (polymers) are the product of condensation (polymerization) reactions, in which monomers are polymerized thereby forming water.

Carbohydrates Sugars and Polysaccharides

- Exist in a variety of configurations
 - Sugar (**saccharide**): a simple carbohydrate with a sweet taste
 - Monosaccharide usually contains 3-7 carbons
 - **Disaccharide** contains two monosaccharides
 - **Polysaccharide** contains five or more monosaccharides
- Monosaccharides and disaccharides are specified by combining a prefix that describes a characteristic of the sugar with the suffix –ose
 - **Hexoses** six carbons
 - Pentoses- five carbons
 - Fructose- for fruit

Carbohydrates

• Carbohydrates: Sugars and Polysaccharides Most can be represented by the general formula

$$(CH_2O)_n$$

where n = the number of units of this combination of atoms Major sugars (monosaccharides) in the cell are glucose, galactose and fructose. Several sugars bonded together are called **polysaccharides**.

Fig. 2.14 Common classes of carbohydrates

Sugars are bonded by **glycosidic bonds**. Water is released (condensation, dehydration) after the bond is formed.

Fig. 2.15 Glycosidic bond

Peptidoglycan in bacteria is an example of a polysaccharide.

Fig. 2.16 Polysaccharides

Starch: (1,4)-bonded (linear) and Glycogen: (1,6) branching starch

Lipids:

Fats & Oils, Phospholipids, and Waxes

- Lipids- a variety of substances that are not soluble in polar solvents
- Building blocks: Alcohol and fatty acids
- Will dissolve in non-polar solvents
- Main groups of lipids:
 - Triglycerides (Fats & Oils)
 - Phospholipids
 - Miscellaneous lipids: Steroids & Waxes

Lipids

• Triglycerides (Includes fats and oils) :

A single molecule of the poly-alcohol glycerol covalently bound to three fatty acids

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Figure 2.17

Phospholipids

- Phospholipids Contain
 - glycerol with
 - two fatty acids attached to
 - a phosphate group on the third glycerol binding site
- Phospholipids serve as a major structural component of cell membranes.

Figure 2.18

Miscellaneous Lipids

- **Steroids**: complex ringed compounds commonly found in cell membranes and as animal hormones
 - Best known: cholesterol
- Waxes: esters formed between a long-chain alcohol and a saturated fatty acid

Cholesterols are associated with cell membranes of some cells. They bind to the fatty acid of a lipid.

Fig. 2.19 Formula for cholesterol.

Proteins

- Proteins are the predominant organic molecule in cells (58% of dry mass)
- Building blocks (monomers): amino acids
- Proteins consist of a series of amino acids (ex. Peptides, polypeptides)
- Examples: enzymes, immunoglobulins, etc.

Proteins: "Shapers of Life"

- Building blocks- amino acids
 - 20 different naturally occurring forms
 - Basic skeleton- a carbon (the α carbon) linked to an amino group (NH₂), a carboxyl group (COOH), a hydrogen atom (H), and a variable R group

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Amino acids vary based on their reactive (R) groups present.

Fig. 2.20 Structural formula of selected amino acids

TABLE 2.5	Twenty Amino Acids and Their Abbreviations	
Acid	Abbreviation	Characteristic of R Groups*
Alanine	Ala	NP
Arginine	Arg	+
Asparagine	Asn	Р
Aspartic acid	Asp	
Cysteine	Cys	Р
Glutamic acid	Glu	-
Glutamine	Gln	Р
Glycine	Gly	Р
Histidine	His	+
Isoleucine	Ile	NP
Leucine	Leu	NP
Lysine	Lys	+
Methionine	Met	NP
Phenylalanine	Phe	NP
Proline	Pro	NP
Serine	Ser	Р
Threonine	Thr	Р
Tryptophan	Trp	NP
Tyrosine	Tyr	Р
Valine	Val	NP

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

*NP, nonpolar; P, polar; +, positively charged; -, negatively charged.

Table 2.5 Twenty natural occurring amino acids and their abbreviations

Similar

62

A covalent peptide bond forms between the amino group on one amino acid and the carboxyl group on another amino acid.

Fig. 2.21 The formation of a peptide bonds in a tetrapeptide ⁶³

Proteins take on a variety of shapes, which enables specific interactions (function) with other molecules.

Fig. 2.22 Stages in the formation of a functioning protein

Nucleic acids

- Deoxy-<u>r</u>ibo<u>n</u>ucleic <u>a</u>cid (DNA)
- Ribonucleic acid (RNA)
- DNA contains genetic information which is captured (transcribed) into RNA
- The information stored in RNA can be translated into the primary sequence of proteins

Nucleic acids are polymers of monomers called nucleotides.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 2.23 The general structure of nucleic acids

The pentose sugars and nitrogen bases determine whether a molecule will be DNA or RNA.

Fig. 2.24 The sugars and nitrogen bases that make up DNA and RNA. 67

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

The DNA configuration is a double helix.

Fig. 2.25 A structural representation of the double helix of DNA

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

DNA serves as a universal template for the synthesis of new DNA, mRNA, tRNA and rRNA.

Fig. 2.26 Simplified view of DNA replication in cells.

The Cell

Fundamental components:

- Genetic element
- Membrane
- Ribosome

Fundamental characteristics

- Reproduction
- Metabolism
- Motility (Response to molecules)
- Protection and Storage (Cell wall or membrane)
- Nutrient transport

Chapter 3

Topics

- Methods of Culturing Microorganisms
- Microscope

Methods of Culturing Microorganisms

- Five basic techniques
- Media
- Microbial growth
Five basic techniques

- 1. Isolation
- 2. Inoculate
- 3. Incubate
- 4. Inspection
- 5. Identification

Inoculation and Isolation

• Isolation: separating one species from another

- Separating a single bacterial cell from other cells and providing it space on a nutrient surface will allow that cell to grow in to a mound of cells (a **colony**).
- If formed from a single cell, the colony contains cells from just that species.

• **Inoculation**: producing a culture

Introduce a tiny sample (the inoculum) into a container with nutrient medium

Fig. 3.2 Isolation technique

Fig. 3.3 Three basic methods for isolating bacteria.

Streak Plate Method

- Streak plate method- small droplet of culture or sample spread over surface of the medium with an inoculating loop
 - Uses a pattern that thins out the sample and separates the cells

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Loop Dilation Method

- Loop dilation, or pour plate, method- sample inoculated serially in to a series of liquid agar tues to dilute the number of cells in each successive tubes
 - Tubes are then poured in to sterile Petri dishes and allowed to solidify

Spread Plate Method

 Spread plate method- small volume of liquid, diluted sample pipette on to surface of the medium and spread around evenly by a sterile spreading tool

Media: Providing Nutrients in the Laboratory

- At least 500 different types
- Contained in test tubes, flasks, or Petri dishes
- Inoculated by loops, needles, pipettes, and swabs
- Aseptic technique necessary
- Classification of media
 - Physical state
 - Chemical composition
 - Functional type

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 3.1 Three Categories of Media Classification

Physical State	Chemical Composition	Functional Type
(Medium's Normal	(Type of Chemicals	(Purpose of
Consistency)	Medium Contains)	Medium)*
 Liquid Semisolid Solid (can be converted to liquid) Solid (cannot be liquefied) 	 Synthetic (chemically defined) Nonsynthetic (complex; not chemically defined) 	 General purpose Enriched Selective Differential Anaerobic growth Specimen transport Assay Enumeration

*Some media can serve more than one function. For example, a medium such as brain-heart infusion is general purpose and enriched; mannitol salt agar is both selective and differential; and blood agar is both enriched and differential.

Classification of Media by Physical State

- Liquid media: water-based solutions, do not solidify at temperatures above freezing, flow freely when container is tilted
 - Broths, milks, or infusions
 - Growth seen as cloudiness or particulates
- Semisolid media: clotlike consistency at room temperature
 - Used to determine motility and to localize reactions at a specific site
- Solid media: a firm surface on which cells can form discrete colonies
 - Liquefiable and non-liquefiable
 - Useful for isolating and culturing bacteria and fungi

(a) (0) (CO (b) Uninoculated Negative Positive

Liquid media are waterbased solutions that are generally termed **broths**, **milks and infusions**.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 3.4 Sample liquid media

Semi-solid media contain a low percentage (<1%) of agar, which can be used for motility testing.

Fig. 3.5 Sample semisolid media

(a)

Solid media contain a high percent (1-5%) of agar, which enables the formation of discrete colonies.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(b)

Fig. 3.6 Solid media that are reversible to liquids

Classification of Media by Chemical Content

- Synthetic media- compositions are precisely chemically defined
- Complex (nonsynthetic) media- if even just one component is not chemically definable

Synthetic media contain pure organic and inorganic compounds that are chemically defined (i.e. known molecular formula).

Table 3.2 Medium for the growth and maintenance of the Green Alga Euglena

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.				
or the Growth and Maintenance of Alga <i>Euglena</i>				
6 g 4 g 5 g 30 g 2 g 1.04 g 1.04 g 1.04 mg 12 mg 0.6 g 0.8 g 0.16 g 0.72 g 60 mg 40 mg 6 mg 0.62 mg 5 mg				
1.34 mg				

Note: These ingredients are dissolved in 1,000 ml of water. aa, amino acid; c, carbohydrate; oa, organic acid; v, vitamin; g, gram; mg, milligram.

Complex or enriched media contain ingredients that are not chemically defined or pure (i.e. animal extracts).

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a)

Fig. 3.7 Examples of enriched media

Classification of Media by Function

- General purpose media: to grow as broad a spectrum of microbes as possible
 - Usually nonsynthetic
 - Contain a mixture of nutrients to support a variety of microbes
 - Examples: nutrient agar and broth, brain-heart infusion, trypticase soy agar (TSA).

Functional types of growth media

- Enriched media
- Selective media
- Differential media

Enriched Media

 Enriched media- contain complex organic substances (for example blood, serum, growth factors) to support the growth of fastidious bacteria.
 Examples: blood agar, Thayer-Martin medium (chocolate agar)

Selective media enables one type of bacteria to grow, while differential media allows bacteria to show different reactions (i.e. colony color).

Fig. 3.8 Comparison of selective and different Media with general-purpose media.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Examples of differential media.

Table 3.4 Differential media

ABLE 3.4	Differential Media	
Medium	Substances That Facilitate Differentiation	Differentiates Between
Blood agar Mannitol salt agar	Intact red blood cells Mannitol, phenol red, and 7.5% NaCl	Types of hemolysis Species of Staphylococcus NaCl also inhibits the salt-sensitive species
Hektoen enteric (HE) agar	Brom thymol blue, acid fuchsin, sucrose, salicin, thiosulfate, ferric ammonium	Salmonella, Shigella, other lactose fermenters from nonfermenters Dyes and bile also
	citrate, and bile	positive bacteria
agar	Lactose, neutral red	ferment lactose (lowering the pH) from those that do not
Urea broth	Urea, phenol red	Bacteria that hydrolyze urea to ammonia
Sulfur indole motility (SIM)	Thiosulfate, iron	H ₂ S gas producers from nonproducers
Triple-sugar iron agar (TSIA)	Triple sugars, iron, and phenol red dye	Fermentation of sugars, H ₂ S production
XLD agar	Lysine, xylose, iron, thiosulfate, phenol red	Enterobacter, Escherichia, Proteus, Providencia, Salmonella, and Shigella
Birdseed agar	Seeds from thistle plant	Cryptococcus neoformans and other fungi

Mannitol salt agar is a type of selective media, and MacConkey agar is a type of differential media.

(a)

Copyright C The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 3.9 Examples of media that are both selective and differential

© Kathy Park Talaro

Miscellaneous Media

- Reducing media- absorbs oxygen or slows its penetration in the medium; used for growing anaerobes or for determining oxygen requirements
- Carbohydrate fermentation media- contain sugars that can be fermented and a pH indicator; useful for identification of microorganisms
- Transport media- used to maintain and preserve specimens that need to be held for a period of time
- Assay media- used to test the effectiveness of antibiotics, disinfectants, antiseptics, etc.
- Enumeration media- used to count the numbers of organisms in a sample.

Examples of miscellaneous media are reducing, fermentation and transportation media.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fig. 3.11 Carbohydrate fermentation broth

Microbial growth

- Incubation
 - Varied temperatures, atmospheric states
- Inspection
 - Mixed culture
 - Pure culture
- Identification
 - Microscopic appearance
- Maintenance and disposal
 - Stock cultures
 - sterilization

Microscope

- Magnification
- Resolution
- Optical microscopes
- Electron microscopes
- Stains

3.2 The Microscope: Window on an Invisible Realm

 Two key characteristics of microscopes: magnification and resolving power

A compound microscope is typically used in teaching and research laboratories.

Fig. 3.14 The parts of a student laboratory microscope

101

Principles of Light Microscopy

Magnification

- Results when visible light waves pass through a curved lens
- The light experiences refraction
- An image is formed by the refracted light when an object is placed a certain distance from the lens and is illuminated with light
- The image is enlarged to a particular degree- the power of magnification
- Magnification- occurs in two phases
 - Objective lens- forms the real image
 - Ocular lens- forms the virtual image
 - Total power of magnification- the product of the power of the objective and the power of the ocular

Resolution

- Resolution- the ability to distinguish two adjacent objects or points from one another
- Also known as **resolving power**
 - Resolving power (RP) = <u>Wavelength of light in nm</u>

2 x Numerical aperture of objective lens

- Shorter wavelengths provide a better resolution
- Numerical aperture- describes the relative efficiency of a lens in bending light rays
- Oil immersion lenses increase the numerical aperture

A specimen is magnified as light passes through the objective and ocular lens.

Fig. 3.15 The pathway of light and the two Stages in magnification of a compound microscope.

Resolution can be increased by using immersion oil.

Figs. 3.17 and 3.18 Workings of an oil immersion lens, and effect of magnification.

Comparison of optical and electron microscopes.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 3.6Comparison of Light Microscopes and
Electron Microscopes

Characteristic	Light or Optical	Electron (Transmission)
Useful magnification	2,000×	1,000,000× or more
Maximum resolution	200 nm	0.5 nm
Image produced by	Light rays	Electron beam
Image focused by	Glass objective lens	Electromagnetic objective lenses
Image viewed	Glass ocular	Fluorescent screen
through	lens	
Specimen placed on	Glass slide	Copper mesh
Specimen may be alive	Yes	No
Specimen requires special stains or treatment	Not always	Yes
Colored images possible	Yes	No

Table 3.6 Comparison of light microscopes and Electron microscopes

Stains

Positive stains

– Dye binds to the specimen

- Negative stains
 - Dye does not bind to the specimen, but rather around the specimen.

and vegetative cells (blue) © Kathy Park Talaro,Harold J. Benson, Jack Bostrack/ Visuals Unlimited, Manfred Kage/ Peter Arnold, Inc., A.M. Siegelman/ Visuals Unlimited, David Frankhauser
Optical microscopes

- All have a maximum magnification of 2000X
 - Bright-field
 - Dark-field
 - Phase-contrast
 - Differential interference
 - Fluorescent
 - Confocal

Summary of optical and electron microscopes.

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

TABLE 3.5	Comparisons of Types of Microscopy			
Microscope		Maximum Practical Magnification	Resolution	Important Features
Visible light as source of illumination				
Bright-field		2,000×	0.2 µm (200 nm)	Common multipurpose microscope for live and preserved stained specimens; specimen is dark, field is white; provides fair cellular detail
Dark-field		2,000×	0.2 μm	Best for observing live, unstained specimens; specimen is bright, field is black; provides outline of specimen with reduced internal cellular detail
Phase-contrast		2,000×	0.2 µm	Used for live specimens; specimen is contrasted against gray background; excellent for internal cellular detail
Differential interference		2,000×	0.2 µm	Provides brightly colored, highly contrasting, three-dimensional images of live specimens
Ultraviolet rays as source				
of illumination				
Fluorescent		2,000×	0.2 µm	Specimens stained with fluorescent dyes or combined with fluorescent antibodies emit visible light; specificity makes this microscope an excellent diagnostic tool
Confocal		2,000×	0.2 μm	Specimens stained with fluorescent dyes are scanned by laser beam, multiple images (optical sections) are combined into three-dimensional image by a computer; unstained specimens can be viewed using light reflected from specimen
Electron beam forms image of specimen				
Transmission electron microscope (TEM)		100,000×	0.5 nm	Sections of specimen are viewed under very high magnification; finest detailed structure of cells and viruses is shown; used only on preserved material
Scanning electron microscope (SEM)		650,000×	10 nm	Scans and magnifies external surface of specimen; produces striking three-dimensional image

Table 3.5 Comparison of types of microscopy

110